[image: image1.png]

Developing Applications for GTViewer
Using Visual Studio .NET 2005 and 2008

[image: image2.png]

© Copyright 2008 Graphic Technologies, Inc. All Rights Reserved.

Portions of this computer program are copyright © 2008 Srego, Inc. All Rights Reserved.

Contents

3Introduction

4Creating an External Application for GTViewer with Visual Studio .NET 2005

15Creating an External Application for GTViewer with Visual Studio .NET 2008

26Highlight by Phase Example Application in VB.NET

34Moving from Visual Basic 6 to Visual Basic .NET

36External Application Template Code in C#

37Highlight by Phase Application in C#

Introduction

Almost from its beginning, GTViewer has been extendible with External Applications. These External Applications can be for tracing, data collection, importing data, data monitors, etc. GTViewer has been supporting External Applications though a technique called Dependency Injection. An External Application is written as a COM object with an interface to GTViewer; then entries in the .GTM File define the COM objects that can be used with the dataset. GTViewer dynamically adds the External Applications to its menus when the dataset is opened and will launch the External Applications when they are selected. The External Applications are run inside of GTViewer and appear seamlessly integrated.

In the past, almost all GTViewer External Applications were written in Visual Basic 6 (VB6). There were a few written in Visual C++ and even some written in Excel (VBA), but the majority were in VB6. Not only is VB6 getting a little long in the tooth (released in 1998), but Visual Basic .NET and the .NET Framework have finally gained acceptance as a development platform and the .NET savvy development crowd is rapidly growing.

Strangely enough, GTViewer has been able to support .NET External Applications all along, and GTI had even provided a template .NET application several years ago. However, until Microsoft ended its support for VB6 in March 2008, the idea of using .NET for the development of External Applications had gained little traction.

With GTViewer 8.0, even better support for developing .NET External Application has been added along with new templates and examples. This document covers several topics:
· Creating an External Application for GTViewer in Visual Studio .Net 2005 and 2008

· Template External Applications for GTViewer in VB.Net and C#

· The complete Highlight by Phase sample application in VB.NET and C#
Creating an External Application for GTViewer with Visual Studio .NET 2005

1. Create a new project in Visual Studio. The project type can be either Visual Basic or C#. This example will be Visual Basic .NET.

2. Select the Windows Control Library from the list of templates:
[image: image3.png]New Project

Project types:

Templotes:

e
Instalshield 2009 Projects
Detfuscator Projects

= Other Languages
= VisualBasic

Windows
Offce
Smrt Device
Database
Starter Kits
DxCore
Test
i

Visual 3¢

Visual G+

. b Brnioct Tunes

(Hwndons Appication

| Console Application
et Contrl Lirary
[l Empty Project

My Templates

53 ¥95 Interop Lsercontrol
{I5erch Onine Templates.

Visual Studio installed templates

ciss Lbrary

SEwidons Service
Slcrysal Reports Applcaton

53.¥86 InteropForm Library.

A projectfor creating controls to use in Windows appications

Neme: FighlightyPhase_Dotfiet_V52005

Location; Li\DemoApplGTViewer DOTHET_Examples|s2005

[Ceromse.

Solution Name: | HighlightByPhase_Dotfiet_V52005

reate drectory for soltion

3. The next step is to add GTViewer as a reference to your project so that the COM interface will be available to Intellisense and the GTViewer types will be defined. If you are using XP, this process is very simple. For Vista, the process is more complicated. Both XP and Vista instructions are provided below.

For XP

Once the Project is created, add the GTViewer.tlb as a reference. Select Project/Add Reference in Visual Studio:

[image: image4.png]Flo Edt View

&

Toabax
I General

There are o usat
Drag an tem o

ighlightByPhas

ot

5200! rosoft Visual Studi

Project | Buld Debug Dats Took DevExpress
‘dd Windows Form.

8] Adduser ontrl
8] Add conperent

o1 add v,
g add s ShitsakeC
Addew Iem, Crteshitrn
AddExiting e, Shitsakea

Exclude From Project

() show AllFies

‘dd Web Reference.

Set a5 StartUp Project

HighlightByPhase_Dothet 52005 Properties.

Browse to find the GTViewer.tlb file which will be located in the GTViewer product directory. This directory will be c:\Program Files\Graphic Technologies Inc\GTViewer (or something similar):
[image: image5.png]Add Reference

NET | com

Projects | Browse | Recent

Lookin |)

GTViewer

(2hep
(2 5ample

Sncsenet.
Sncseandi

ncsuddl
ez

Sermasterd
Gt GTviewer.exe

Sltoctangta

File pame:

Filesof type:

qiswerth

Component Fles (i b ob" ook eve:

Then click OK.

 For Vista

Security Issues prevent Visual Studio from automatically creating the COM wrapper dll. This problem is very likely a bug in Visual Studio working with Vista and may be resolved by Microsoft at some point in the future; however, the work around is straight forward.

With GTViewer version 8.0.0.15+, the COM Wrapper Dll is provided. It is called GTViewer.dll. Follow the XP instructions above for adding a reference, only select the GTViewer.dll instead of GTViewer.tlb.

If you are using a version of GTViewer that does not deliver the GTViewer.dll, you can create one yourself using the Tlbimp utility. You must run the Visual Studio Command Prompt (located under Programs/Visual Studio .NET 200X/Visual Studio Tools). You must run the command prompt as Administrator (right click and selected Run As Administrator). Then, in the new command prompt window, change the directory to the GTViewer product directory (c:\program files\graphic technologies inc\GTViewer). Run the tlbimp command with the following parameters:

 tlbimp gtviewer.tlb /out:gtviewer.dll

4. Several Project settings need to be made before creating the External Application. In Visual Studio, select Project/<Project Name> Properties , then:
a) On the Application Tab, Click the Assembly Information button:
[image: image6.png]ighlightByPhase_DotNet_V5200: rosoft Visual Stud

Fle Edt View Project Buld Debug Data Tools DevExpress Test DevPartner Window Communky Help

=2 N NN R R = R = N . -y U - | [atookip A=)

2 P R R |)
Toobox ~ B X | tighiightByPh. DotNet_V52005*| _UserControll vb* | _UserCantrollvb [Design]® | Strt Page |
= General
Agplcation
There are o ussblecontrols i tis group Configuration: [N/A Platforn: /A
Drag an tem onkotis text to add o the o
toolbox. e
- Assenbly neme: Raok namespace
2 [HahlghtsyPhase Dot 152005 | [iateayphase_ o vszuos
e Application type: Ieon:

Resouces (Ocfou com

Startup object

Settings [| ([ssembly Information.

Signing

b) Check the Make assembly COM-Visible box on the Assembly Information dialog:

[image: image7.png]Assembly Information

assembly Version

il Version;

QU 2T 4071-9750-4c35-b02F-6505aeb52276
Neutral Languages [(Hore) v

@ssemh\v Comvite

Then click OK.

c) On the Compile Tab, set the Option Strict setting to On. Using Option Strict is optional; however, it is recommended especially if you plan on using Dotfuscator or simply want more design-time checks to be performed on your code.
[image: image8.png]lighlightByPhase_DotNet_VS2005 - Microsoft Visual Studio,

Fle Edt

View Project Buld

=2 K- AN

Debug Data Tools

9 .

e

Toabax
I General
Appication®
There are no usable contrals n tis aroup.
Drag an em onto this text to add t to the .
e Compe’
Debug
References
Resources
Settings
Signing

Code Analysis

DevExpress Test

b Debug

~ & X | HighlightByPh..DotNet_V52005* | UserControll.vb*

DevPartner Window Communty Help

o_tookp - |6 % B

- Any CPU &

.

Start Page

UserControlt vb [Design]*

Platform: | Active (Any CPL)

Configuration: | Active (Debug)

Buid output path;

biniDebugl | [oromse.
Allconfigurstions
ption expct: o src Opion compare;
on A [on v Jeinary v
Condiion Netication

Enor v
Late bincing; cacoul o ot run ine Enor v
mplc: type; object assumed Enor v
Use of variabl prio to assignment Waring v
Funcion|Operator wihouk etu vakie Waring v
Unused locel variable Waring v
Instance varisble accesses shared member Waring v
Recursive operator o propery access Waring v
Dupicate or overlspping catch blocks Waring v

[Disable all warnings

[Treat all warnings as errors

Generate ML documentation il

Register for COM nterap Buid Events,

d) Also on the Compile Tab, check the Register for COM interop box. If this option is not checked, you will have to manually register the application with Regasm.
e) On the Debug Tab, change the Start Action to Start external program and browse to the GTViewer.exe in the GTViewer Product directory (which should be c:\program files\graphic technologies inc\gtviewer or similar):
[image: image9.png]HighlightByPhase_DotNet_ V52005 - Microsoft Visual Studio,

Ele Edt Vew Project Buld Debug Data Ioos DevExpress Test Devbartner Window Communky Help

B I R - e) - @ otookp EEET
Toobox ~ B X | StartPage HighlightByPh..DotNet_v52005 | LserControlvb | UserControl vb [Desin]
B —
Appication
There are no usable control ntis group. Configuration: |active (Debug)] plaform: [actve (any CPL) v
Drag an ke onto this ext £ add & o the -
toolbox. e
Start action
Debug
O start project
References
@ start external program; | slgraphic Technalogies Inc|GTViewer|GTViewer.exd|
i O start browser with LRL
Settings Start Options
Sining Command ne arguments:
Code analysis Working drectory: [

[Use remote machine.

Enable Debuggers

[Enable unmanaged code debugging
[Ensble 5QL Server debugging

5. In the Solution Explorer, right-click on the UserControl1.vb and choose View Designer:

[image: image10.png]HighlightByPhase_DotNet_V52005 - Microsoft Visual Studio

Edt Vew Poject Buld Debug Dats Fomat Iools DevExpress Test Devbarner Window Communty Help

EH@ 6B

» Debug - aey U - otook

= % B

HighlightByPh... Dotflet_VS2005* | LserControll vb* ' UserControlL.vb [Design]* | Start Page

Toobox ~ax
Al Windows Forms -
(= Common Controls

N Painter

Button

Checkox

£3 CheckeclistBox

=¥ Combobox

T DateTimericker

A Label

A Unkiabel

Listeox

Listiew
[+-] MaskedTextgox.
721 MonthCalendar

6. Make the Control’s design surface larger. The size of the surface does not determine the size of the control in GTViewer.
[image: image11.png]ighlightByPhase_DotNet V52005 - Microsoft Visual Studio

Tt Vew Pomt Bd Dby Data Fomot Todk Devbpress Ted Devatmer Window Conmy Hob
@]9 b oy = Ay - 5ok £ |5 8 35

Todlbox ~ B X | righlghtyPh. Ootet_Y52005" | UserControlLvb") UserControl1.vb [Design]* | start Page
All indows Forms ~

1 Common Controls

N poter

sutton

Chectgox

[Checked thox

Conbosox

T DateTimericker
A Label

A Unkiabel
Listeox

237 Litiien 3
-] MaskedTextBox
7] MonthCalendar

= Notifylcon

IEp—
4l FcureBox

0 progresstar
© Radosition

bl TextBox

&, Toorp

- Treaview

£ webrowser J

Gt GTvControl
- Containers

7. Place a Panel control on the Control’s design surface. You will find Panel in the Toolbox under Containers. The Panel is used to size the control automatically when the External Application is displayed in GTViewer. There are many ways that this automatic sizing can be done; this simple approach is more than adequate for this example. The Panel should start at the upper left corner (0,0) and be the size that you want the application to appear in GTViewer. You will place all controls for the External Application in the panel. Make sure the panel is called Panel1 (or modify the AdjustDialogSize function in the code to match; AdjustDialogSize is discussed later).
[image: image12.png]HighlightByPhase DotNet_ V52005 - Microsoft Visual Studio
Bl Edt Vew Pojct Buld Debug Dota Fomet Tooks DevExpress Test Devbartner Window Communty Hel

= b Debug ~ fny CPU ~ | [# q_tookip B YR =P X P o X

218 o - Rz : Shl |2 E:

Tookox HighightByPh... Dotet V2005 | UserControl1vb* UserControl1.vb [Design]* | Start Page ~ | Soltion Explorer - HghlightByPhase_Dothiet 52005
E ElEE&L
] Soltion Hihioht8Phase Dotfiet V52005 (1 project)
L3 Geter " (5] HighlightByPhase_DotNet ¥52005

Button i by Project
Chedgox 8 Usercortzo b

CheckedLitiox
Combogox

All Windows Forms
=1 Commaon Controls

DateTimepicter
Label
Lnktabel
Litoox
Lt
Maskedetox
WorthCalendsr
Not#ytcon
NumericUpDonn
PictureBox
Progressoar
Radobutton
RihTetox
Textgox

& ToolTp
Tresview

53 webbronser

Gt arvconol Properies

= Containers

_Pointer

= FlowLayoutPanel

Panelt System.Windows.Forms.Panel
R EIRAIS!
"] Groupkox (Datafindings)

] rarel (tiame)

AccessbleDescription
[spitcontainer consbiohe

TabControl AccessbleRole. Default
< TabeLayoutzanel Alowpron Fabe
= Menus & Toolbars Aachr Top, Left
X Fater Autosercl Fabe
Autoscrclargin 0.0
Autosarclinsize 00
Autosiz Fake

] Contextitenustrip
2 Menustrp

L= statusstrp Autosieode Graworly
35 Toolstrp BackColor [contral

1 ToolstrpCantainer Backgroundinage 1 (none)

= Data Backgroundinagelayout Tl

R Pointer Borderstyle FinedSingle
e Causesvaldation e

33 Toobox [FResource View Contextienustrip (none)
o Cursor Defat
Dock Hone
@ 7 Enors| i\0 warnings | [(1) 0 Messages)
Descrption L column | profece The data bincings fo the control

[Eror List [5] Output | g2 Find Symbol Rests

Ready 0,0 2 1793247

8. In the Solution Explorer, right click on the UserControl1.vb file and select View Code. Then paste a copy of the following code template into the Control’s code page.
Imports System.Runtime.InteropServices

<ClassInterface(ClassInterfaceType.AutoDual)> _

Public Class UserControl1

 Dim appObj As GTViewer.Application = Nothing

 Dim docObj As GTViewer.Document = Nothing

 Dim viewObj As GTViewer.View = Nothing

 Dim dlgObj As GTViewer.DialogObject = Nothing

 Public Sub SetApplicationObject(ByVal obj As Object)

 appObj = CType(obj, GTViewer.Application)

 End Sub

 Public Sub SetDocumentObject(ByVal obj As Object)

 docObj = CType(obj, GTViewer.Document)

 End Sub

 Public Sub SetViewObject(ByVal obj As Object)

 viewObj = CType(obj, GTViewer.View)

 End Sub

 Public Sub SetDialogObject(ByVal obj As Object)

 dlgObj = CType(obj, GTViewer.DialogObject)

 End Sub

 Public Sub EventMessage(ByVal messageType As Long, ByVal value1 As Long, _

 ByVal value2 As Long, ByVal value3 As Long, _

 ByVal value4 As Long)

 Select Case messageType

 Case 0

 ' Initialization Code here

 dlgObj.SetTitle("App Name")

 AdjustDialogSize()

 Case 1

 ' Termination Code here

 End Select

 End Sub

 Private Sub AdjustDialogSize()

 Panel1.BorderStyle = Windows.Forms.BorderStyle.None

 dlgObj.SetSizeEx(Panel1.Width + Panel1.Left + 6, _

 Panel1.Height + Panel1.Top + 38, 0)

 End Sub

End Class

The code shown above is the minimum code required to use an External Application with GTViewer. The template code is similar to the Visual Basic 6 External Application template code, but there are some differences. A detailed description of the code follows:
a) The InteropServices assembly must be imported. Make sure the following line is at the top of the file:

Imports System.Runtime.InteropServices

You may have other assemblies to import, but this one is required.

b) You must specify the Class Interface type for the User Control:

<ClassInterface(ClassInterfaceType.AutoDual)> _

Public Class UserControl1

.

.

.

End Class

If the Class Interface type is not specified like it is shown above, GTViewer will not see the User Control.

c) Define global variables for the GTViewer interface objects:

 Dim appObj As GTViewer.Application = Nothing

 Dim docObj As GTViewer.Document = Nothing

 Dim viewObj As GTViewer.View = Nothing

 Dim dlgObj As GTViewer.DialogObject = Nothing

If the GTViewer.tlb file has not been set as a Project Reference, the GTViewer types will not be recognized.

d) The Interface Object assignment methods must be provided:
 Public Sub SetApplicationObject(ByVal obj As Object)

 appObj = CType(obj, GTViewer.Application)

 End Sub

 Public Sub SetDocumentObject(ByVal obj As Object)

 docObj = CType(obj, GTViewer.Document)

 End Sub

 Public Sub SetViewObject(ByVal obj As Object)

 viewObj = CType(obj, GTViewer.View)

 End Sub

 Public Sub SetDialogObject(ByVal obj As Object)

 dlgObj = CType(obj, GTViewer.DialogObject)

 End Sub

These methods are exposed by the COM interface so that GTViewer can set the User Control’s global variables to the correct instances of the objects.

e) The EventMessage method is exposed by the COM interface so that GTViewer can communicate with the User Control and relay event information:

 Public Sub EventMessage(ByVal messageType As Long, ByVal value1 As Long,_

 ByVal value2 As Long, ByVal value3 As Long, _

 ByVal value4 As Long)

 Select Case messageType

 Case 0

 ' Initialization Code here

 dlgObj.SetTitle("App Name")

 AdjustDialogSize()

 Case 1

 ' Termination Code here

 End Select

 End Sub

The GTVx.doc will describe all of the MessageTypes that can be sent to this method (under the GTViewer Event Message Types section). The template example contains only the 2 messages. Type 0 is always fired when the communication is established and the Control is ready to run. This event is typically used to change the title of the external application and to set the size of the Control’s dialog box (discussed next). Message Type 1 is fired when the document with which the User Control is associated is closing. If any persistent storage or cleanup needs to be performed, this is the place to do it.
f) The AdjustDialogSize method is provided so that the size of the control is automatically communicated to GTViewer. In the past, the size of the control had to be defined in the .GTM file, but this simple method can now adjust the size automatically based on the Panel placed earlier in the Control’s design surface:
 Private Sub AdjustDialogSize()

 Panel1.BorderStyle = Windows.Forms.BorderStyle.None

 dlgObj.SetSizeEx(Panel1.Width + Panel1.Left + 6, _

 Panel1.Height + Panel1.Top + 38, 0)

 End Sub

The auto sizing capability is dependent on the Panel control placed on the form. The dialog adjusts to fit the panel. The border of the panel is turned off as well, so it will not be visible while the External Application is running.

9) The .GTM file used with your data must be modified to specify the External Applications you want made available to your data. In the [External Applications] section, add a DotNet entry in the following format:

DotNet=<name>|<menu Position>|<objectPath>|<mode>|<flags>|<height>|<width>|<x>|<y>|

· Name is the name that will appear on the Query menu in GTViewer at the bottom of the list after the names of locate and thematic highlight queries. The Name must be unique.

· Menu Position is for future use. Currently, it should be set to 1.
· ObjectPath is the path to the .NET user control that the system will recognize. The path will be the <Assembly name>.<UserControl name>.

· Mode is set to 0 for modal dialog and 1 for non-modal. Modal dialogs must complete before they return control to GTViewer; Non-modal dialogs can run simultaneously with GTViewer.

· Flags is for future use. Currently, it should be set to 0.

· Height is the height in pixels of the area that will be reserved in GTViewer for the display of the user control. The Height can also be specified as an asterisk (*) to indicate that the application will determine the Height.
· Width is the width in pixels of the area that will be reserved in GTViewer for the display of the user control. The Width can also be specified as an asterisk (*) to indicate that the application will determine the Width.
· X is horizontal position in the GTViewer map window at which the upper left hand corner of the user control will be displayed.

· Y is vertical position in the GTViewer map window at which the upper left hand corner of the user control will be displayed.

For the current example, this entry would be:

[External Applications]

DotNet=Highlight By Phase (VS 2005)|1|HighlightByPhase_DOTNET_VS2005.UserControl1|2|0|*|*|0|0|

10) At this point, you can compile and run the application. The Debugger will start GTViewer, so make sure that GTViewer is not running before you start the External Application. Select Debug/Start Debugging (or press F5). GTViewer will be launched. You will then need to open your data (if open last file is not turned on). The new External Application should appear under GTViewer’s Query menu. When you select it, you will see the empty template dialog:
[image: image13.png]E3GTviewer - [GTViewer1]

Gt File View Draw Query Tools Options Window Help

DSEAESR#QexXmAS Bud Do+ =l A
hEdmoE BB as|/SH00048 b

I__El

For Help, press F1 8897.6 y=1517252.2 Zoom: 153%6.7

Once you have verified that the empty dialog comes up, you can exit GTViewer and proceed to the next step, Highlight by Phase Example Application in VB.NET (p. 24).

Creating an External Application for GTViewer with Visual Studio .NET 2008
1. Create a new Windows project in Visual Studio. The project type can be either Visual Basic or C#. This example will be Visual Basic .NET. The .NET Framework can be set to 2.0, 3.0, or 3.5.

2. Select the Windows Forms Control Library from the list of templates:

[image: image14.png]New Project

Project types:

Templotes:

NET Framework 2.0

warklow

= VisualBasic

i

Offce

DxCore

Test
e

st 2009 rofcts
Dotfuscator Projets @ Wncows Foms Applcation
 OtherLangusges Console plcation

Windows

Smrt Device

Reporting

wiarkiow

widons Serice

My Templates

53 ¥95 Interop Lsercontrol

Datsbase search Oniine Templates.

Visual Studio installed templates

s Lbrary
(5] Empty Project
i Windows Forms Contol Lbrary

53.¥86 InteropForm Library.

A projectFor creating contralsto use in Windaws Farms applications (.NET Framework 2.0)

Neme:

HighlightByPhase_Dthet _52008|

Location;

Li\DemopplGTViewer DOTHET_Examples|52008

[Ceromse.

Salution Name:

FighlightyPhase_Dottiet V52008

Creste drectory for soltion

3. The next step is to add GTViewer as a reference to your project so that the COM interface will be available to Intellisense and the GTViewer types will be defined. If you are using XP, this process is very simple. For Vista, the process is more complicated. Both XP and Vista instructions are provided below.

For XP

Once the Project is created, add the GTViewer.tlb as a reference. Select Project/Add Reference in Visual Studio:

[image: image15.png]& HighlightByPhase_DotNet

Flo Edt View

52008

icrosoft Visual Studio

Project | Buld Debug Dats Took DevExpress

Test Analyze Window

L5

Toabax

acd Windows Fom.
dd ser Cortro,

Add Component

add Mot

add Cless, ShftHAeC
add tew tem, Culeshifeen
add Existing e, Shifteatrn
New Folder

Show Al Fes

Unload Project

add Reference.

A Web Referenc.

Set s StartUp Project

HighlightyPhase_Dotliet V52008 Properties

- Any CPU

UserControlLvb [Design]

Codk AR

Help

Star

Browse to find the GTViewer.tlb file which will be located in the GTViewer product directory. This directory will be c:\Program Files\Graphic Technologies Inc\GTViewer (or something similar):

[image: image16.png]Add Reference

NET | com

Projects | Browse | Recent

Lookin |)

GTViewer

(2hep
(2 5ample

ncsuddl
ez

Sermasterd
Gt GTviewer.exe

Sltoctangta

Sncscnetdt

Sncsecnd

File pame:

Filesof type:

qiswerth

Component Fls (" i b ob;" ook eve:* manifest)

(e)

Then click OK.
 For Vista

Security Issues prevent Visual Studio from automatically creating the COM wrapper dll. This problem is very likely a bug in Visual Studio working with Vista and may be resolved by Microsoft at some point in the future; however, the work around is straight forward.

With GTViewer version 8.0.0.15+, the COM Wrapper Dll is provided. It is called GTViewer.dll. Follow the XP instructions above for adding a reference, only select the GTViewer.dll instead of GTViewer.tlb.

If you are using a version of GTViewer that does not deliver the GTViewer.dll, you can create one yourself using the Tlbimp utility. You must run the Visual Studio Command Prompt (located under Programs/Visual Studio .NET 200X/Visual Studio Tools). You must run the command prompt as Administrator (right click and selected Run As Administrator). Then, in the new command prompt window, change the directory to the GTViewer product directory (c:\program files\graphic technologies inc\GTViewer). Run the tlbimp command with the following parameters:

 tlbimp gtviewer.tlb /out:gtviewer.dll

4. Several Project settings need to be made before creating the External Application. In Visual Studio, select Project/<Project Name> Properties, then:

a) On the Application Tab, Click the Assembly Information button:

[image: image17.png]‘& HighlightByPhase_DotNet_VS2008 - Microsoft Visual Studio

Bl Edt Vew Project Buld

=" - AN
Tookox -1

Debug Data Tools

=) &

Devpress Test Amslyze Window e
» Debug - dny CPU - o - |

HighlightByPh..DotNet_V52008 | LiserContral1 vh [Design] | Start Page | Object Erawser

Appication

comple
Debug
References
Resources
Services
Settings
Sigping

y Extensions

Code Analysis

J——— Rootramespace
| abigteyphase otvet 52008

Applcation type: Icon:
Class Library v

Startup object
(uone) v

—
ot T>

b) Check the Make assembly COM-Visible box on the Assembly Information dialog:

[image: image18.png]Assembly Information

assembly Version

il Version;

QU (sabc0034-de77-4500-a04d-esbc5778687

)

Neutral Lanquage:

Make assembly CON-Vsbis

Then click OK.
c) On the Compile Tab, set the Option Strict setting to On. Using Option Strict is optional; however, it is recommended, especially if you plan on using Dotfuscator or simply want more design-time checks to be performed on your code.

[image: image19.png]‘& HighlightByPhase_DotNet_VS2008 - Microsoft Visual Studio

Ele Edt View Project Buld Debug Data Iools Devexpress Test Ansyze Window Hep

- 53 G % G]9 - 0 - E B b ehug - aey cPU - o S EHERRREO . (©@
Taobox ~ B X riighlightByPh..DotNet_V52008* LserCortroll.vb [Design] | Start Page | Object Browser ~
applcation®
Configuration: | Active (Debug) Platform: | Active (Any CPL) v
Comple*
Buld output path
Debug s
biniDebugl | [oromse.
jtia=s Comple Options:
o Option expict: Option stit:
on ! [on
Services ‘ I
Opton compere: eponter—
satings [y) [on
Warring configuraions:
Signing 9 confi
Condton Hotication
My Extensions e 3
o Lote binding; cal coud al ot run time: Emor v
Inpict: type; object assumed Emor v
Use o variable prior o assignment: Warning v
Function/Operatar withaLt return value Warning v
Unused loca variable Warning v
Instance varisble accesses shared member Warning v
Recursive operatar or property access Warning v
Duplcate or overlapping catch blocks Warning v

[Disable all warnings
[Treat all warnings as errors

Generate ML documentation e

Register for COM interap Buid Events,
‘dvanced Compl Options.

B sorver Sxpiorer | Toobox [

d) Also on the Compile Tab, check the Register for COM interop box. If this option is not checked, you will have to manually register the application with Regasm.
e) On the Debug Tab, change the Start Action to Start external program and browse to the GTViewer.exe in the GTViewer Product directory (which should be c:\program files\graphic technologies inc\gtviewer or similar):
[image: image20.png]‘& HighlightByPhase_DotNet_VS2008 - Microsoft Visual Studio
Ble £ Yew Poect Bud Dohup Data Tods Devegress T Ansie Mindow e
T I N T - o1t g

v & X tiighlightByPh..DotNet_V52008" LiserControlt.vb [Design] | Start Page | Object Browser

Applcaton*
Configuration: [Active (Debug) | Platiom: [actve (any CPU) v
Compie*
Start Action
Debug*
O start project
References
@ Start externalprogram: siGraphic Technologies Inc|GTviewer|GTViewer.exe
R O start browser ith LRL
Services Stert Options
Settings Command ne arguments:
Signing

My Extensions

et =

Code Analysis] Use remote machine

Enable Debuggers

[Enable unmanaged code debugging
[Ensble 5QL Server debugging

5. In the Solution Explorer, right-click on the UserControl1.vb and choose View Designer:

[image: image21.png]& HighlightByPhase_DotNet_VS2008 - Microsoft Visual Studio

Ele Edt Vew Project Buld Debug Data Fomat Took DevExpress Test Analyee Window Help

AR IR b s s awcu - o1t

Toobox ~ B X tighighteyeh. Dottet vsz006* UserControlLvb [Design] Start Page | Object Browser
3 Datacridiew]
(o7 Dataset

7 DateTimePicker
5] orectonnry

21, Diectorysearcher o
(% DomainUpDown
@ Eorprovider
18] Evertog
FleSystembatcher E o o

== FlowLayoutpanel L
] FolderBrowserDialog
L3 FontDislog

Groupgox
HelpProvider
3 Hserolgar
7 tmagelist
A Label

A LinkLabel

6. Make the Control’s design surface larger. The size of the surface does not determine the size of the control in GTViewer.
[image: image22.png]& HighlightByPhase_DotNet_VS2008 - Microsoft Visual Studio
Ele Edt Vew Project Buld Debug Data Fomat Took DevExpress Test Analyee Window Help

25 % b oshig = aycr - o1t

Toobox < B X| " tighighteyeh,. Dottt vszone* UserControl1vb [Designl* | stat Page | Object Browser
3 Datacridiew]
Dataset

DateTimePicker

DrectoryEriry

Drectorysearcher
Domaintlpbown

Enorprovider

Evertiog

FleSystembatcher

~ FlonLayoutpanel
FoldertranserDisbg

FontDidog

GroupBo

HelpProvider

Hcrolgar

Tagelist

Label

LkLabel

Listox

Listview
] MaskedTextEox
Menustrip

7. Place a Panel control on the Control’s design surface. You will find Panel in the Toolbox under Containers. The Panel is used to size the control automatically when the External Application is displayed in GTViewer. There are many ways that this automatic sizing can be done; this simple approach is more than adequate for this example. The Panel should start at the upper left corner (0,0) and be the size that you want the application to appear in GTViewer. You will place all controls for the External Application in the panel. Make sure the panel is called Panel1 (or modify the AdjustDialogSize function in the code to match; AdjustDialogSize is discussed later).

[image: image23.png]& HighlightByPhase_DotNet_VS2008 - Microsoft Visual Studio
Ele Edt View Project Buld Debug Data Fomat Took Devixpress Test Anabyze Window

5 % B9 o b s awcu AT BREO, 99,

Toabax -8 FighightByPh...Dotet V52006% UserControl1.vh [Design]* | Start Page | Object Browser ~ x| Solution Exporer - Solution HighlghtByPhase_Dotiet_Y52008'(1 proj,
(2 Datagridien R eEEEA

o7 Dataset 5] Sokion ighlghtoyPhase _Dotiet Y5200 (1 proect)
= DateTmepider = (5 HighlihtByPhase_DotNet_¥52008
] orstognry Fl
21 Drectorysearcher
) bomaintpooun
@ Enorprocer
8] Evention
23] Flsystemwatcher
= FlowlayoutPanel
[—
8 FontDisog
"] GroupBox
HelpProvider
< sarcloar
5 ImageLit
A Label
A Uiktsbel
Litoox
Lt
MaskedTetox
Merustra
5 MessageQuese
721 MonthCalendar
Not#ytcon
NumericLgDann
OpenrizDison
£ Pagesetupbidog
] rarel gsobenExorer [351 Ve
2 parformancecounter D
4l FcureBox

Panelt Sysem.Wedows Form.Pane
3 Prioisg

& ZJE,

(Applcationsettings)

Eror Lt (Datatindings)

(ame)

@ 0Enors| (i\0 warnings (D)0 Messages i T—

Descrtion Comn Project AccessbleName
AccessbieRole Defaut
AlowDrap Fakie
anchar Top, Left
Autoserol Fakie
Autoscralargin 0,0
AutoscrolMinsize 0,0
Autosie Fake
Autosieode Graworly
BackColor [contral
Backgroundimage 3 trone)

i server Explorer |35 Toobox

(ApplicationSettings)
Maps property settings to an application configuration fe.
2 Erro Lis 5] Output | . Test Results | g3 Find 5ymbol Resls

8. In the Solution Explorer, right click on the UserControl1.vb file and select View Code. Then paste a copy of the following code template into the Control’s code page.

Imports System.Runtime.InteropServices

<ClassInterface(ClassInterfaceType.AutoDual)> _

Public Class UserControl1

 Dim appObj As GTViewer.Application = Nothing

 Dim docObj As GTViewer.Document = Nothing

 Dim viewObj As GTViewer.View = Nothing

 Dim dlgObj As GTViewer.DialogObject = Nothing

 Public Sub SetApplicationObject(ByVal obj As Object)

 appObj = CType(obj, GTViewer.Application)

 End Sub

 Public Sub SetDocumentObject(ByVal obj As Object)

 docObj = CType(obj, GTViewer.Document)

 End Sub

 Public Sub SetViewObject(ByVal obj As Object)

 viewObj = CType(obj, GTViewer.View)

 End Sub

 Public Sub SetDialogObject(ByVal obj As Object)

 dlgObj = CType(obj, GTViewer.DialogObject)

 End Sub

 Public Sub EventMessage(ByVal messageType As Long, ByVal value1 As Long, _

 ByVal value2 As Long, ByVal value3 As Long, _

 ByVal value4 As Long)

 Select Case messageType

 Case 0

 ' Initialization Code here

 dlgObj.SetTitle("App Name")

 AdjustDialogSize()

 Case 1

 ' Termination Code here

 End Select

 End Sub

 Private Sub AdjustDialogSize()

 Panel1.BorderStyle = Windows.Forms.BorderStyle.None

 dlgObj.SetSizeEx(Panel1.Width + Panel1.Left + 6, _

 Panel1.Height + Panel1.Top + 38, 0)

 End Sub

End Class

The code shown above is the minimum code required to use an External Application with GTViewer. The template code is similar to the Visual Basic 6 External Application template code, but there are some differences. A detailed description of the code follows:

a) The InteropServices assembly must be imported. Make sure the following line is at the top of the file:

Imports System.Runtime.InteropServices

You may have other assemblies to import, but this one is required.

b) You must specify the Class Interface type for the User Control:

<ClassInterface(ClassInterfaceType.AutoDual)> _

Public Class UserControl1

.

.

.

End Class

If the Class Interface type is not specified like it is shown above, GTViewer will not see the User Control.

c) Define global variables for the GTViewer interface objects:

 Dim appObj As GTViewer.Application = Nothing

 Dim docObj As GTViewer.Document = Nothing

 Dim viewObj As GTViewer.View = Nothing

 Dim dlgObj As GTViewer.DialogObject = Nothing

If the GTViewer.tlb file has not been set as a Project Reference, the GTViewer types will not be recognized.

d) The Interface Object assignment methods must be provided:

 Public Sub SetApplicationObject(ByVal obj As Object)

 appObj = CType(obj, GTViewer.Application)

 End Sub

 Public Sub SetDocumentObject(ByVal obj As Object)

 docObj = CType(obj, GTViewer.Document)

 End Sub

 Public Sub SetViewObject(ByVal obj As Object)

 viewObj = CType(obj, GTViewer.View)

 End Sub

 Public Sub SetDialogObject(ByVal obj As Object)

 dlgObj = CType(obj, GTViewer.DialogObject)

 End Sub

These methods are exposed by the COM interface so that GTViewer can set the User Control’s global variables to the correct instances of the objects.

e) The EventMessage method is exposed by the COM interface so that GTViewer can communicate with the User Control and relay event information:

 Public Sub EventMessage(ByVal messageType As Long, ByVal value1 As Long,_

 ByVal value2 As Long, ByVal value3 As Long, _

 ByVal value4 As Long)

 Select Case messageType

 Case 0

 ' Initialization Code here

 dlgObj.SetTitle("App Name")

 AdjustDialogSize()

 Case 1

 ' Termination Code here

 End Select

 End Sub

The GTVx.doc (which documents the API for GTViewer and GTVx) will describe all of the MessageTypes that can be sent to this method (under the GTViewer Event Message Types section). The template example contains only the 2 messages. Type 0 is always fired when the communication is established and the Control is ready to run. This event is typically used to change the title of the external application and to set the size of the Control’s dialog box (discussed next). Message Type 1 is fired when the document with which the User Control is associated is closing. If any persistent storage or cleanup needs to be performed, this is the place to do it.

f) The AdjustDialogSize method is provided so that the size of the control is automatically communicated to GTViewer. In the past, the size of the control had to be defined in the .GTM file, but this simple method can now adjust the size automatically based on the Panel placed earlier in the Control’s design surface:

 Private Sub AdjustDialogSize()

 Panel1.BorderStyle = Windows.Forms.BorderStyle.None

 dlgObj.SetSizeEx(Panel1.Width + Panel1.Left + 6, _

 Panel1.Height + Panel1.Top + 38, 0)

 End Sub

This Sub adjust the dialog generated by GTViewer to be the same size as Panel1. The 6 and 38 offsets account for the borders of the dialog itself.

The auto sizing capability is dependent on the Panel control placed on the form. The dialog adjusts to fit the panel. The border of the panel is turned off as well, so it will not be visible while the External Application is running.

9) The .GTM file used with your data must be modified to specify the External Applications you want made available to your data. In the [External Applications] section, add a DotNet entry in the following format:

DotNet=<name>|<menu Position>|<objectPath>|<mode>|<flags>|<height>|<width>|<x>|<y>|

· Name is the name that will appear on the Query menu in GTViewer at the bottom of the list after the names of locate and thematic highlight queries. The Name must be unique.

· Menu Position is for future use. Currently, it should be set to 1.
· ObjectPath is the path to the .NET user control that the system will recognize. The path will be the <Assembly name>.<UserControl name>.

· Mode is set to 0 for modal dialog and 1 for non-modal. Modal dialogs must complete before they return control to GTViewer; Non-modal dialogs can run simultaneously with GTViewer.

· Flags is for future use. Currently, it should be set to 0.

· Height is the height in pixels of the area that will be reserved in GTViewer for the display of the user control. The Height can also be specified as an asterisk (*) to indicate that the application will determine the Height.
· Width is the width in pixels of the area that will be reserved in GTViewer for the display of the user control. The Width can also be specified as an asterisk (*) to indicate that the application will determine the Width.
· X is horizontal position in the GTViewer map window at which the upper left hand corner of the user control will be displayed.

· Y is vertical position in the GTViewer map window at which the upper left hand corner of the user control will be displayed.

For the current example, this entry would be:

[External Applications]

DotNet=Highlight By Phase (VS 2008)|1|HighlightByPhase_DotNet_VS2008.UserControl1|2|0|*|*|0|0|

10) At this point, you can compile and run the application. The Debugger will start GTViewer, so make sure that GTViewer is not running before you start the External Application. Select Debug/Start Debugging (or press F5). GTViewer will be launched. You will then need to open your data (if open last file is not turned on). The new External Application should appear under GTViewer’s Query menu. When you select it, you will see the empty template dialog:

[image: image24.png]E3GTviewer - [GTViewer1]

Gt File View Draw Query Tools Options Window Help

DSEAESR#QexXmAS Bud Do+ =l A
hEdmoE BB as|/SH00048 b

I__El

For Help, press F1 8897.6 y=1517252.2 Zoom: 153%6.7

Once you have verified that the empty dialog comes up, you can exit GTViewer and proceed to the next step, Highlight by Phase Example Application in VB.NET (p. 24).

Highlight by Phase Example Application in VB.NET
1) Now the rest of the Highlight by Phase example application can be implemented. All of the previous steps will be the same for any External Application. What happens from this point forward is specific to the External Application you are creating.

In the Panel, add a Group Box that contains 5 Check Boxes. Then add 2 Buttons:

[image: image25.png]HighlightByPhase_DotNet_ V52005 - Microsoft Visual Studio,

Ble Edt Vew Projct Buld Debug Data Fomat Took Devespress Test DevPertner Window Community Help

T I N T - 3 oot -5 e L
= [@]m)s ;- D =
Toolbox -3 x StartPage HighlightByPh...Dothet 52005 | UserControll.vb* ’UserControl1.vb [Design]*
AllWindows Forms A
i
e o Hihight

N Pointer
Button A Phase

Chedtgox
CheckedLitiox
Combogox

B Phase
C Phase

Multiple
DateTimePicker "

e Switches

LikLabel
ListBox]
Listiew

MaskedTextBox Clear

MonthCalendar

o

Notiylcon 4J
NumericUpDoun

Picturefox.

ProgressBar

Radiobuttan

RichTextBox

Texttox

&, Toorp

Treetten

53 webbronser
ot Grvcentral
= Containers
R Pointer

The CheckBoxes are named: CheckBoxA, CheckBoxB, CheckBoxC, CheckBoxMultiple, and CheckBoxSwitches.

The two buttons are named ButtonHighlight and ButtonClear.

2) The complete code for the Highlight by Phase Example application is shown on the next few pages.

Complete Listing for Highlight by Phase Application

Imports System.Runtime.InteropServices

< ClassInterface(ClassInterfaceType.AutoDual)> _

Public Class UserControl1

 Dim appObj As GTViewer.Application = Nothing

 Dim docObj As GTViewer.Document = Nothing

 Dim viewObj As GTViewer.View = Nothing

 Dim dlgObj As GTViewer.DialogObject = Nothing

 Const DATAID As Integer = 1

 Dim g_connTableId As Integer = -1

 Dim g_connPhasePos As Integer = -1

 Dim RED_COLOR As Integer = RGB(255, 0, 0)

 Dim GREEN_COLOR As Integer = RGB(0, 255, 0)

 Dim ORANGE_COLOR As Integer = RGB(255, 128, 0)

 Dim BLUE_COLOR As Integer = RGB(0, 0, 255)

 Dim ERROR_COLOR As Integer = RGB(128, 0, 255)

 Dim SWITCH_COLOR As Integer = RGB(255, 255, 0)

 Dim g_lastGidLookup As Integer = 0

 Dim g_lastUfidLookup As Integer = 0

 Dim g_lastDrawType As Integer = 0

 Const MAX_CIRCLES As Integer = 1000

 Class CircleItem

 Public Sub New(ByVal categoryId As Integer, ByVal offset As Integer)

 m_categoryId = categoryId

 m_offset = offset

 End Sub

 Public m_categoryId As Integer

 Public m_offset As Integer

 End Class

 Dim g_circleList As New Generic.List(Of CircleItem)

 Public Sub SetApplicationObject(ByVal obj As Object)

 appObj = CType(obj, GTViewer.Application)

 End Sub

 Public Sub SetDocumentObject(ByVal obj As Object)

 docObj = CType(obj, GTViewer.Document)

 End Sub

 Public Sub SetViewObject(ByVal obj As Object)

 viewObj = CType(obj, GTViewer.View)

 End Sub

 Public Sub SetDialogObject(ByVal obj As Object)

 dlgObj = CType(obj, GTViewer.DialogObject)

 End Sub

Public Sub EventMessage(ByVal messageType As Long, ByVal value1 As Long, _

 ByVal value2 As Long, ByVal value3 As Long, _

 ByVal value4 As Long)

 'ListBox1.Items.Add("Message: " + messageType.ToString)

 Select Case messageType

 Case 0

 ' Initialization code here

 dlgObj.SetTitle("Highlight by Phase")

 AdjustDialogSize()

 Case 1

 ' Termination code here

 End Select

 End Sub

 Private Sub AdjustDialogSize()

 Panel1.BorderStyle = Windows.Forms.BorderStyle.None

 dlgObj.SetSizeEx(Panel1.Width + Panel1.Left + 6, _

 Panel1.Height + Panel1.Top + 38, 0)

 End Sub

 Private Function InitializeTableInfo() As Boolean

 g_connTableId = docObj.DataGetTableId(DATAID, "CONNECTIVITY")

 g_connPhasePos = docObj.DataGetTableAttrPos(DATAID, g_connTableId, "PH")

 g_lastGidLookup = -1

 g_lastUfidLookup = -1

 g_lastDrawType = 0

 If g_connTableId = -1 Or g_connPhasePos = -1 Then

 MessageBox.Show("Unable to Initialize Connectivity Table Query")

 Return False

 End If

 Return True

 End Function

Private Sub ButtonHighlight_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles ButtonHighlight.Click

 If Not InitializeTableInfo() Then

 Return

 End If

 g_circleList.Clear()

 Dim oldWeight As Integer = docObj.GetCurrentWeight

 docObj.SetCurrentWeight(4)

 Cursor = Cursors.WaitCursor

 Dim xlow As Double

 Dim ylow As Double

 Dim xhigh As Double

 Dim yhigh As Double

 If viewObj.GetViewExtents(0, xlow, ylow, xhigh, yhigh) Then

 Dim catList As Object = Nothing

 Dim offsetList As Object = Nothing

 Dim filterList As Object = Nothing

 Dim itemCount As Integer = 0

 Dim blockCount As Integer = 0

 Dim filterStr As String

 filterStr = "3:5, 3:8, 3:11, 3:10, 3:9, 3:7, 3:3, 3:2, 3:13, 3:14, 4:40, 4:39, 4:42, 4:41, 4:53, 4:54, 4:55, 4:5, 4:4, 4:12, 4:13, 4:20, 4:21, 4:26, 4:27, 4:51, 4:52, 4:33, 4:32, 4:47, 4:46, 4:15, 4:16, 4:23, 4:24, 4:29, 4:30, 4:35, 4:59, 4:57, 4:37"

 itemCount = viewObj.GetElementsInRangeInitialize(0, _

 xlow, ylow, xhigh, yhigh, 0, filterStr)

 While viewObj.GetElementsInRangeFetch(1000, catList, offsetList, _

 filterList, blockCount)

 Dim cList() As Object = CType(catList, Object())

 Dim oList() As Object = CType(offsetList, Object())

 Dim fList() As Object = CType(filterList, Object())

 For j As Integer = 0 To blockCount - 1

 ProcessFeature(CInt(cList(j)), CInt(oList(j)), CInt(fList(j)))

 Next

 catList = Nothing

 offsetList = Nothing

 filterList = Nothing

 End While

 viewObj.GetElementsInRangeReset()

 End If

 ' draw circles for open points and switches

 For i As Integer = 0 To g_circleList.Count - 1

 DrawSwitch(g_circleList(i))

 Next

 viewObj.SetEmphasizeSessionGraphics(1)

 viewObj.RefreshView()

 Cursor = Cursors.Default

 docObj.SetCurrentWeight(oldWeight)

 End Sub

Sub DisplayItemResults(ByVal catId As Integer, ByVal offset As Integer, _

 ByVal drawType As Integer)

 Dim col As Integer

 Dim weight As Integer

 Select Case drawType

 Case 1
 col = ORANGE_COLOR

 weight = 4

 Case 2
 col = RED_COLOR

 weight = 2

 Case 3
 col = BLUE_COLOR

 weight = 2

 Case 4
 col = GREEN_COLOR

 weight = 2

 Case Else

 col = ERROR_COLOR

 weight = 1

 End Select

 If drawType <> -1 Then

 viewObj.HighlightAddElementEx(catId, offset, col, weight, 0, 0, 10, 1)

 End If

 End Sub

Function GetPhaseInfo(ByVal gid As Integer, ByVal ufid As Integer, _

 ByVal filterid As Integer, ByRef drawType As Integer) As Boolean

 Dim phs As String

 If g_lastGidLookup = gid And g_lastUfidLookup = ufid Then

 drawType = g_lastDrawType

 Return True

 End If

 If docObj.DataInitializeFetch(DATAID, g_connTableId, gid, ufid) Then

 Dim tableId As Integer

 Dim count As Integer

 Dim valueList As Object = Nothing

 While docObj.DataFetchRecord(tableId, valueList, count) And count < 100

 Dim vList() As Object = CType(valueList, Object())

 phs = vList(g_connPhasePos).ToString.ToUpper.Trim

 ProcessItem(phs, gid, ufid, filterid, drawType)

 g_lastGidLookup = gid

 g_lastUfidLookup = ufid

 g_lastDrawType = drawType

 valueList = Nothing

 End While

 Return True

 End If

 Return False

 End Function

 Sub DrawSwitch(ByVal item As CircleItem)

 Dim xlow As Double

 Dim ylow As Double

 Dim xhigh As Double

 Dim yhigh As Double

 If docObj.GetElementRange(item.m_categoryId, item.m_offset, 0, _

 xlow, ylow, xhigh, yhigh) Then

 Dim cenx As Double

 Dim ceny As Double

 cenx = ((xhigh - xlow) / 2.0#) + xlow

 ceny = ((yhigh - ylow) / 2.0#) + ylow

 viewObj.HighlightAddCircle(0, cenx, ceny, 40000, SWITCH_COLOR, 0, 2000)

 viewObj.HighlightAddCircle(0, cenx, ceny, 65000, SWITCH_COLOR, 2000, 5000)

 viewObj.HighlightAddCircle(0, cenx, ceny, 100000, SWITCH_COLOR, 5000, 8000)

 viewObj.HighlightAddCircle(0, cenx, ceny, 130000, SWITCH_COLOR, 8000, 10000)

 viewObj.HighlightAddCircle(0, cenx, ceny, 165000, SWITCH_COLOR, 10000, 15000)

 viewObj.HighlightAddCircle(0, cenx, ceny, 200000, SWITCH_COLOR, 15000, 20000)

 viewObj.HighlightAddCircle(0, cenx, ceny, 250000, SWITCH_COLOR, 20000, 30000)

 viewObj.HighlightAddCircle(0, cenx, ceny, 350000, SWITCH_COLOR, 30000, 60000)

 viewObj.HighlightAddCircle(0, cenx, ceny, 500000, SWITCH_COLOR, 60000, 100000)

 viewObj.HighlightAddCircle(0, cenx, ceny, 750000, SWITCH_COLOR, 100000, 0)

 End If

 End Sub

Sub ProcessItem(ByVal phs As String, ByVal gid As Integer, ByVal ufid As Integer, _

 ByVal filterid As Integer, ByRef drawType As Integer)

 Dim count As Integer = 0

 Dim aFlag As Boolean = False

 Dim bFlag As Boolean = False

 Dim cFlag As Boolean = False

 Dim multiFlag As Boolean = False

 If InStr(phs, "A") <> 0 Then

 aFlag = True

 count = count + 1

 End If

 If InStr(phs, "B") <> 0 Then

 bFlag = True

 count = count + 1

 End If

 If InStr(phs, "C") <> 0 Then

 cFlag = True

 count = count + 1

 End If

 If count > 1 Then

 multiFlag = True

 aFlag = False

 bFlag = False

 cFlag = False

 End If

 drawType = -1

 If multiFlag And CheckBoxMultiple.Checked Then

 drawType = 1

 ElseIf aFlag And CheckBoxA.Checked Then

 drawType = 2

 ElseIf bFlag And CheckBoxB.Checked Then

 drawType = 3

 ElseIf cFlag And CheckBoxC.Checked Then

 drawType = 4

 End If

 End Sub

Sub ProcessFeature(ByVal catId As Integer, ByVal offset As Integer, _

 ByVal filterid As Integer)

 Dim drawType As Integer = -1

 Dim linkageList As Object = Nothing

 Dim linkCount As Integer

 Dim gid As Integer

 Dim ufid As Integer

 If docObj.GetElementLinkage(catId, offset, linkageList, linkCount) Then

 If linkCount > 1 Then

 Dim lList() As Object = CType(linkageList, Object())

 gid = Convert.ToInt32(lList(0))

 ufid = Convert.ToInt32(lList(1))

 End If

 GetPhaseInfo(gid, ufid, filterid, drawType)

 If CheckBoxSwitches.Checked Then

 CheckForSwitch(catId, offset, gid, ufid, filterid)

 End If

 DisplayItemResults(catId, offset, drawType)

 End If

 End Sub

Private Sub ButtonClear_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles ButtonClear.Click

 g_circleList.Clear()

 viewObj.HighlightReset()

 viewObj.SetEmphasizeSessionGraphics(0)

 viewObj.RefreshView()

 End Sub

Private Sub CheckForSwitch(ByVal catId As Integer, ByVal offset As Integer, _

 ByVal gid As Integer, ByVal ufid As Integer, ByVal filterId As Integer)

 If catId = 4 And filterId = 13 Then

 g_circleList.Add(New CircleItem(catId, offset))

 End If

 End Sub

End Class

3) The Highlight by Phase application is for use with the Sample data that is delivered with GTViewer. It can, however, be modified to work with any electric data.

Moving from Visual Basic 6 to Visual Basic .NET

If you are a VB6 programmer and are moving to VB.NET, there are a few differences that should be pointed out in the code.

1) The .NET Interface to GTViewer wants Integers instead of Long values. While a Long will work, it will give a warning until you change it to an Integer.

2) There is no Variant Type in VB.NET. VB6 would only work with Variants for complex types in the COM interface, and GTViewer’s interface is for COM

For most of GTViewer’s methods, standard types are used and there is little difference between calling them in VB6 and VB.NET:

 Dim xlow As Double

 Dim ylow As Double

 Dim xhigh As Double

 Dim yhigh As Double

 If viewObj.GetViewExtents(0, xlow, ylow, xhigh, yhigh) Then

.

.

.

End If
However, if you are returning a list of values, then there is a difference since Variants are not supported in VB.NET. The solution is to use the Object type instead.

 If docObj.DataInitializeFetch(DATAID, g_connTableId, gid, ufid) Then

 Dim tableId As Integer

 Dim count As Integer

 Dim valueList As Object = Nothing

 While docObj.DataFetchRecord(tableId, valueList, count) And count < 100

 Dim vList() As Object = CType(valueList, Object())

 phs = vList(g_connPhasePos).ToString.ToUpper.Trim

 ProcessItem(phs, gid, ufid, filterid, drawType)

 g_lastGidLookup = gid

 g_lastUfidLookup = ufid

 g_lastDrawType = drawType

 valueList = Nothing

 End While

The DataFetchRecord method in the above code segment returns the list of values as a Variant Array. So, valueList is defined as an Object. The object will return the variant array; however, it must be appropriately cast back to a type that is usable in .NET. This problem is complicated further when the Option Strict On is used as it disallows late binding.

Immediately after the call to DataFetchRecord, a new variable called vList is declared as an array of Objects and the valueList variable is cast to an array of Objects. For VB6, an array had to be returned as a Variant Array of Variants, so both levels of this abstraction have to be explicitly resolved to get through the Option Strict On requirements. The individual elements in the vlist array can then be explicitly converted to the appropriate type (which is a string in this example).

3) One additional item that is required in this example is that the valueList must be set to Nothing before the DataFetchRecord can be called again with the same variable. The COM method that GTViewer exposed cannot clear the .NET generated object variable, but setting the variable to Nothing resolves this issue. If you do not set the variable back to Nothing, you will have a Type Mismatch runtime error. This will be true for any method returning a variant, so always set them to Nothing when finished using them if the variable is going to be used again.

External Application Template Code in C#
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Drawing;

using System.Data;

using System.Text;

using System.Windows.Forms;

using System.Runtime.InteropServices;

namespace HighlightByPhase_CSharp_VS2005

{

 [ClassInterface(ClassInterfaceType.AutoDual)]

 public partial class UserControl1 : UserControl

 {

 GTViewer.Application appObj = null;

 GTViewer.Document docObj = null;

 GTViewer.View viewObj = null;

 GTViewer.DialogObject dlgObj = null;

 public UserControl1()

 {

 InitializeComponent();

 }

 public void SetApplicationObject(object obj)

 {

 appObj = (GTViewer.Application)obj;

 }

 public void SetDocumentObject(object obj)

 {

 docObj = (GTViewer.Document)obj;

 }

 public void SetViewObject(object obj)

 {

 viewObj = (GTViewer.View)obj;

 }

 public void SetDialogObject(object obj)

 {

 dlgObj = (GTViewer.DialogObject)obj;

 }

 public void EventMessage(long messageType, long value1, long value2,
 long value3, long value4)

 {

 switch (messageType)

 {

 case 0:

 // Initialization Code here

 dlgObj.SetTitle("App Name");

 AdjustDialogSize();

 break;

 case 1:

 // Termination Code here

 break;

 }

 }

 private void AdjustDialogSize()

 {

 panel1.BorderStyle = BorderStyle.None;

 dlgObj.SetSizeEx(panel1.Width + panel1.Left + 6, panel1.Height + panel1.Top + 38, 0);

 }

 }

}

Highlight by Phase Application in C#
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Drawing;

using System.Data;

using System.Text;

using System.Windows.Forms;

using System.Runtime.InteropServices;

namespace HighlightByPhase_CSharp_VS2005

{

 [ClassInterface(ClassInterfaceType.AutoDual)]

 public partial class UserControl1 : UserControl

 {

 GTViewer.Application appObj = null;

 GTViewer.Document docObj = null;

 GTViewer.View viewObj = null;

 GTViewer.DialogObject dlgObj = null;

 const int DATAID = 1;

 int g_connTableId = -1;

 int g_connPhasePos = -1;

 int RED_COLOR = 0x0000FF;

 int GREEN_COLOR = 0x00FF00;

 int ORANGE_COLOR = 0x0080FF;

 int BLUE_COLOR = 0xFF0000;

 int ERROR_COLOR = 0xFF0080;

 int SWITCH_COLOR = 0x00FFFF;

 int g_lastGidLookup = 0;

 int g_lastUfidLookup = 0;

 int g_lastDrawType = 0;

 const int MAX_CIRCLES = 1000;

 public class CircleItem

 {

 public CircleItem(int categoryId, int offset)

 {

 m_categoryId = categoryId;

 m_offset = offset;

 }

 public int m_categoryId;

 public int m_offset;

 }

 System.Collections.Generic.List<CircleItem> g_circleList = new System.Collections.Generic.List<CircleItem>();

 public UserControl1()

 {

 InitializeComponent();

 }

 public void SetApplicationObject(object obj)

 {

 appObj = (GTViewer.Application)obj;

 }

 public void SetDocumentObject(object obj)

 {

 docObj = (GTViewer.Document)obj;

 }

 public void SetViewObject(object obj)

 {

 viewObj = (GTViewer.View)obj;

 }

 public void SetDialogObject(object obj)

 {

 dlgObj = (GTViewer.DialogObject)obj;

 }

 public void EventMessage(long messageType, long value1, long value2, long value3, long value4)

 {

 switch (messageType)

 {

 case 0:

 // Initialization Code here

 dlgObj.SetTitle("Highlight by Phase (C#)");

 AdjustDialogSize();

 break;

 case 1:

 // Termination Code here

 break;

 }

 }

 private void AdjustDialogSize()

 {

 Panel1.BorderStyle = BorderStyle.None;

 dlgObj.SetSizeEx(Panel1.Width + Panel1.Left + 6, Panel1.Height + Panel1.Top + 38, 0);

 }

 private bool InitializeTableInfo()

 {

 g_connTableId = docObj.DataGetTableId(DATAID, "CONNECTIVITY");

 g_connPhasePos = docObj.DataGetTableAttrPos(DATAID, g_connTableId, "PH");

 g_lastGidLookup = -1;

 g_lastUfidLookup = -1;

 g_lastDrawType = 0;

 if (g_connTableId == -1 | g_connPhasePos == -1)

 {

 MessageBox.Show("Unable to Initialize Connectivity Table Query");

 return false;

 }

 return true;

 }

 private void ButtonHighlight_Click(object sender, EventArgs e)

 {

 if (!InitializeTableInfo()) return;

 g_circleList.Clear();

 int oldWeight = docObj.GetCurrentWeight();

 docObj.SetCurrentWeight(4);

 Cursor = Cursors.WaitCursor;

 double xlow = 0;

 double ylow = 0;

 double xhigh = 0;

 double yhigh = 0;

 if (viewObj.GetViewExtents(0, ref xlow, ref ylow, ref xhigh, ref yhigh))

 {

 object catList = null;

 object offsetList = null;

 object filterList = null;

 int itemCount = 0;

 int blockCount = 0;

 string filterStr = null;

 filterStr = "3:5, 3:8, 3:11, 3:10, 3:9, 3:7, 3:3, 3:2, 3:13, 3:14, 4:40, 4:39, 4:42, 4:41, 4:53, 4:54, 4:55, 4:5, 4:4, 4:12, 4:13, 4:20, 4:21, 4:26, 4:27, 4:51, 4:52, 4:33, 4:32, 4:47, 4:46, 4:15, 4:16, 4:23, 4:24, 4:29, 4:30, 4:35, 4:59, 4:57, 4:37";

 itemCount = viewObj.GetElementsInRangeInitialize(0, xlow, ylow, xhigh, yhigh, 0, filterStr);

 while (viewObj.GetElementsInRangeFetch(1000, ref catList, ref offsetList, ref filterList, ref blockCount))

 {

 object[] cList = (object[])catList;

 object[] oList = (object[])offsetList;

 object[] fList = (object[])filterList;

 for (int j = 0; j <= blockCount - 1; j++)

 {

 ProcessFeature((int)cList[j], (int)oList[j], (int)fList[j]);

 }

 catList = null;

 offsetList = null;

 filterList = null;

 }

 viewObj.GetElementsInRangeReset();

 }

 // draw circles for open points and switches

 for (int i = 0; i <= g_circleList.Count - 1; i++)

 {

 DrawSwitch(g_circleList[i]);

 }

 viewObj.SetEmphasizeSessionGraphics(1);

 viewObj.RefreshView();

 Cursor = Cursors.Default;

 docObj.SetCurrentWeight(oldWeight);

 }

 public void DisplayItemResults(int catId, int offset, int drawType)

 {

 int col = 0;

 int weight = 0;

 switch (drawType)

 {

 case 1:

 col = ORANGE_COLOR;

 weight = 4;

 break;

 case 2:

 col = RED_COLOR;

 weight = 2;

 break;

 case 3:

 col = BLUE_COLOR;

 weight = 2;

 break;

 case 4:

 col = GREEN_COLOR;

 weight = 2;

 break;

 default:

 col = ERROR_COLOR;

 weight = 1;

 break;

 }

 if (drawType != -1)

 {

 viewObj.HighlightAddElementEx(catId, offset, col, weight, 0, 0, 10, 1);

 }

 }

 public bool GetPhaseInfo(int gid, int ufid, int filterid, ref int drawType)

 {

 string phs = null;

 if (g_lastGidLookup == gid & g_lastUfidLookup == ufid)

 {

 drawType = g_lastDrawType;

 return true;

 }

 if (docObj.DataInitializeFetch(DATAID, g_connTableId, gid, ufid))

 {

 int tableId = 0;

 int count = 0;

 object valueList = null;

 while (docObj.DataFetchRecord(ref tableId, ref valueList, ref count) & count < 100)

 {

 object[] vList = (object[])valueList;

 phs = vList[g_connPhasePos].ToString().ToUpper().Trim();

 ProcessItem(phs, gid, ufid, filterid, ref drawType);

 g_lastGidLookup = gid;

 g_lastUfidLookup = ufid;

 g_lastDrawType = drawType;

 valueList = null;

 }

 return true;

 }

 return false;

 }

 public void DrawSwitch(CircleItem item)

 {

 double xlow = 0;

 double ylow = 0;

 double xhigh = 0;

 double yhigh = 0;

 if (docObj.GetElementRange(item.m_categoryId, item.m_offset, 0, ref xlow, ref ylow, ref xhigh, ref yhigh))

 {

 double cenx = 0;

 double ceny = 0;

 cenx = ((xhigh - xlow) / 2.0) + xlow;

 ceny = ((yhigh - ylow) / 2.0) + ylow;

 viewObj.HighlightAddCircle(0, cenx, ceny, 40000, SWITCH_COLOR, 0, 2000);

 viewObj.HighlightAddCircle(0, cenx, ceny, 65000, SWITCH_COLOR, 2000, 5000);

 viewObj.HighlightAddCircle(0, cenx, ceny, 100000, SWITCH_COLOR, 5000, 8000);

 viewObj.HighlightAddCircle(0, cenx, ceny, 130000, SWITCH_COLOR, 8000, 10000);

 viewObj.HighlightAddCircle(0, cenx, ceny, 165000, SWITCH_COLOR, 10000, 15000);

 viewObj.HighlightAddCircle(0, cenx, ceny, 200000, SWITCH_COLOR, 15000, 20000);

 viewObj.HighlightAddCircle(0, cenx, ceny, 250000, SWITCH_COLOR, 20000, 30000);

 viewObj.HighlightAddCircle(0, cenx, ceny, 350000, SWITCH_COLOR, 30000, 60000);

 viewObj.HighlightAddCircle(0, cenx, ceny, 500000, SWITCH_COLOR, 60000, 100000);

 viewObj.HighlightAddCircle(0, cenx, ceny, 750000, SWITCH_COLOR, 100000, 0);

 }

 }

 public void ProcessItem(string phs, int gid, int ufid, int filterid, ref int drawType)

 {

 int count = 0;

 bool aFlag = false;

 bool bFlag = false;

 bool cFlag = false;

 bool multiFlag = false;

 if (phs.IndexOf("A") != -1)

 {

 aFlag = true;

 count = count + 1;

 }

 if (phs.IndexOf("B") != -1)

 {

 bFlag = true;

 count = count + 1;

 }

 if (phs.IndexOf("C") != -1)

 {

 cFlag = true;

 count = count + 1;

 }

 if (count > 1)

 {

 multiFlag = true;

 aFlag = false;

 bFlag = false;

 cFlag = false;

 }

 drawType = -1;

 if (multiFlag & CheckBoxMultiple.Checked)

 {

 drawType = 1;

 }

 else if (aFlag & CheckBoxA.Checked)

 {

 drawType = 2;

 }

 else if (bFlag & CheckBoxB.Checked)

 {

 drawType = 3;

 }

 else if (cFlag & CheckBoxC.Checked)

 {

 drawType = 4;

 }

 }

 public void ProcessFeature(int catId, int offset, int filterid)

 {

 int drawType = -1;

 object linkageList = null;

 int linkCount = 0;

 int gid = 0;

 int ufid = 0;

 if (docObj.GetElementLinkage(catId, offset, ref linkageList, ref linkCount))

 {

 if (linkCount > 1)

 {

 object[] lList = (object[])linkageList;

 gid = Convert.ToInt32(lList[0]);

 ufid = Convert.ToInt32(lList[1]);

 }

 GetPhaseInfo(gid, ufid, filterid, ref drawType);

 if (CheckBoxSwitches.Checked)

 {

 CheckForSwitch(catId, offset, gid, ufid, filterid);

 }

 DisplayItemResults(catId, offset, drawType);

 }

 }

 private void ButtonClear_Click(object sender, EventArgs e)

 {

 g_circleList.Clear();

 viewObj.HighlightReset();

 viewObj.SetEmphasizeSessionGraphics(0);

 viewObj.RefreshView();

 }

 private void CheckForSwitch(int catId, int offset, int gid, int ufid, int filterId)

 {

 if (catId == 4 & filterId == 13)

 {

 g_circleList.Add(new CircleItem(catId, offset));

 }

 }

 }

}

4
Graphic Technologies Inc – 11/10/08

